编辑: 时间:2024-02-07 00:45:01
输出电压正常,但充电电流很小。遇到这种情况时,应该检查器件是否有接触不良或损坏,如果一切正常,那么要更换充电器来排除故障。
02
严重发热,有外壳烧化变形现象。这主要是部分用户经常随车携带造成部分元器件松动引起的故障。主要表现为:电压工作状态不正常,热量很大,严重时充电器外壳变形,电路板烧焦,导致电压损坏。可将虚焊处重新焊接好。如仍不能排除故障,则需检查是否有元器件开路。
03
充电时电源指示灯亮,充电指示灯橙色。首先请检查一下充电器输出插头与电池盒的充电插头有没有插紧。如确定没有问题,可检查一下电池盒上面的保险丝是否开路或保险丝座有松动接触不良现象。另外,有的车型要把电池锁打开后才能充电。如果以上故障均排除,考虑一下充电器输出线是否开路,可用万用表电压档(200V档)测量一下充电器的空载出电压,应为41-44V(配36V电池因充电器不同有所不同),如果没有的话,可能是充电器输出线开路,并将充电器打开,换一根输出线,即可排除故障。在更换充电器的输出线时,一定要注意原机的正负不要接反。
04
电源指示灯不亮,充电指示灯不亮,充电指示灯不亮。检查充电器输入电源插头是否连接好,可将充电器输入插头插至正常的电源插座中,若情况依旧,将充电品外壳打开,观察一下机内保险丝连接是否完好,有无断路,如没有断路,现检查电源输入线是否良好,在排除电源输入线的故障后,应检查一下电路板上高压区附近的元器件是否有虚焊现象。另外,开路也会引直起述故障,如机内保险丝已断,则千万不要更换在安培的保险丝(充电器的保险丝管一般为2A),应重点检查其元件有无损坏,如有损坏,可用同类型的更换。
05
发热量在,且伴有异常响声,充不进电。故障原因是输出级消振阻容损坏所致。另外,元器件的开路或虚焊也会引起上述故障。
06
输出部分铜箔烧断。打开充电器后现充电器输出部分铜箔烧断,这通常是将电池正负极反接的结果,由此而引起的故障将会导致充电器许多元器件损坏。如果充电器保险丝没有坏,则通常更换元器件后将断铜箔连上即可恢复正常。如果充电器的保险丝已断,则故障较严重,有可能要声,电源指示灯与充电指示灯暗且闪烁故障原因是元器件损坏,可更换损坏元器件,并使充电器输出电压在正常工作范围内。
电池充电通常要完成两个任务,首先是尽可能快地使电池恢复额定容量,另一是使用小电流充电,补充电池因自放电而损失的能量,以维持电池的额定容量。在充电过程中,铅酸电池负极板上的硫酸铅逐渐析出铅,正极板上的硫酸铅逐渐生成二氧化铅。当正负极板上的硫酸铅完全生成铅和二氧化铅后,电池开始发生过充电反应,产生氢气和氧气。这样,在非密封电池中,电解液中的水将逐渐减少。在密封铅酸蓄电池中,采用中等充电速率时,氢气和氧气能够重新化合为水。过充电开始的时间与充电的速率有关。当充电速率大于C/5时,电池容量恢复到额定容量的80%以前,即开始发生过充电反应。只有充电速率小于C/100,才能使电池在容量恢复到100%后,出现过充电反应。为了使电池容量恢复到100%,必须允许一定的过充电反应。过充电反应发生后,单格电池的电压迅速上升,达到一定数值后,上升速率减小,然后电池电压开始缓慢下降。由此可知,电池充足电后,维持电容容量的最佳方法就是在电池组两端加入恒定的电压。浮充电压下,充入的电流应能补充电池因自放电而失去的能量。浮充电压不能过高,以免因严重的过充电而缩短电池寿命。采用适当的浮充电压,密封铅酸蓄电池的寿命可达10年以上。实践证明,实际的浮充电压与规定的浮充电压相差5%时,免维护蓄电池的寿命将缩短一半。铅酸电池的电压具有负温度系数,其单格值为-4mV/℃。在环境温度为25℃时工作很理想的普通(无温度补偿)充电器,当环境温度降到0℃时,电池就不能充足电,当环境温度上升到50℃时,电池将因严重的过充电而缩短寿命。因此,为了保证在很宽的温度范围内,都能使电池刚好充足电,充电器的各种转换电压必须随电池电压的温度系数而变。
常见的几种充电模式为:
1.限流恒压充电模式,其充电曲线和转换电压如图1所示。
2.两阶段恒流充电模式,其充电曲线和转换电压如图2所示。
3.恒流脉冲充电模式,其充电曲线和转换电压如图3所示。
此三种充电模式均为业界推荐采用,其各阶段充电电流间的转换,都分别受有温度补偿的转换电压Vmin(快充最低允许电压)、Vbik(快充终止电压)和Vflt(浮充电压)控制。国外已开发出多款具有上述功能的专用充电集成电路,如UC3906,bq2031等。
二、DB3616C电动自行车充电器的制作实例
目前国内市场上的电动自行车大多采用36V或24V密封铅酸蓄电池组,为了降低成本,与其相配套的充电器大多采用简化的恒流恒压模式,充电曲线见图4。此方案与图1相比,由于省却了补足充电阶段(即Vlk高电压恒压过充电阶段),故电池的容量只能恢复到额定容量的80%~90%,同时,其充电转换电压也没有温度补偿。在冬夏两季易出现充电不足或过充电现象。再者,由于串联电池组中各个电池的自放电率亦不尽相同,如果采用恒定的浮充电压,那么将影响单体电池的充电状态。
本充电机实例采用图3充电模式,原理图见图5。本机选用AC/DC谐振式高效变换器组件DBX6001,作为前级隔离降压。此组件效率高达92%以上。组件输出的60V直流电,由c、d端进入后级充电电路。后级功率元件采用低导通压降器件,考虑到便携性,本机采用小型化设计,内置自动小型风扇,整机体积为75mm130mm50mm。IC和Q1、L、D1等组成快速恒流充电系统。IC采用SG3842,R1、DZ1、C3、C4为IC的供电电路,R4、C6决定IC的振荡频率,C5、R3为补偿元件。刚开始充电时,电池电压较低,PC不导通(原理后述)。IC①脚被R3、R4拉到地电位,⑥脚输出约100kHz脉冲,通过R8加到Q1栅极,控制Q1通断。Q1导通期间,DBX6001③脚输出的充电电流,经储能电感L、外接电池E、Q1、R6到④脚。在给电池充电的同时,电感L也存储着能量,充电电流呈线性增大,并在R6上产生检测压降,经R5、C7传递到IC③脚。当③脚上的电压达到1.1V时,⑥脚关闭脉冲,Q1截止。此时电感L中的磁场能释放,所产生的电流继续向电池供电。D1为L提供续流通道。平均充电电流的大小由R6决定。电池充满后,PC导通,⑧脚输出的5V电压经PC加到R2上,①脚的电位高于2.5V时,⑥脚关闭输出,充电器停止充电。
DBM36为36V铅酸电池组专用充电检测与控制模块,内部有两种充电模式。
本站所发布的文字与图片素材为非商业目的改编或整理,版权归原作者所有,如侵权或涉及违法,请联系我们删除,如需转载请保留原文地址:http://www.baanla.com/ktwx/7620.html
Copyright 2005-20203 www.baidu.com 版权所有 | 琼ICP备2023011765号-4 | 统计代码
声明:本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:123456789@qq.com