编辑:[db:作者] 时间:2024-08-25 01:06:19
(1)纯电阻串联电路
如图3-30所示,电路中有两个电阻R1和R2,两个电阻头尾相连,这种连接办法便是串联。在这种电路中,为了便于剖析,要捉住阻值大的电阻进行着力剖析,如果电路中某个电阻的阻值远小于其他电阻的阻值,那么这个电阻就可以忽略不计,可以算作该电阻两个端点间是由导线接通的。
图3-30 纯电阻串联电路
(2)纯电阻并联电路
如图3-31所示,电路中两个电阻R1和R2并排连接,构成了并联电路。在这种电路中,如果某个电阻的阻值远大于其他电阻的阻值,那么此电阻器就可以忽略不计。这点与串联电路恰好相反。
电阻分压电路在分压电路中,电阻分压电路是最基本的分压电路。有时候电路中也会有电容、二极管、晶体管等电子元器件构成分压电路。分压电路有两个关键点:一个是输入端,另一个是输出端。
如图3-32所示,电路中输入电压Ui加在电阻R1和R2上,输出电压UO为串联电路中电阻R2上的电压,这种连接办法的电路就称为分压电路。
图3-31 纯电阻并联电路
图3-32 电阻分压电路
电阻分流电路如图3-33所示,电阻R1与R2并联,电路中流经R2的总电流被R1分担了一部分,这种类型的电路便是分流电路。如果电阻R2是其他电子元器件,那么R1就为该元器件分担了电流,从而防止过大电流利过该元器件,对其起到保护浸染。以是R1又称分流保护电阻。
电阻隔离电路(1)范例电阻隔离电路
如图3-34所示,是范例电阻隔离电路,电路中电阻R1将电路中A、B两点隔离,使两点的电压大小不等,但是这两点之间还是通路,而这样的电路就称为隔离电路,这种情形也是最大略的隔离电路。
图3-33 电阻分流电路
图3-34 范例电阻隔离电路
(2)自举电路中电阻隔离电路
如图3-35所示,是自举电路中实用电阻隔离电路,它能提高大旗子暗记下的半周旗子暗记幅度,电路中的Rl便是隔离电阻。
电路中,R1用来将B点的直流电压与直流事情电压+V隔离,使B点直流电压有可能在某瞬间超过+V。
图3-35 电阻隔离电路
(3)旗子暗记源电阻隔离电路
如图3-36所示是旗子暗记源电阻隔离电路。电路中的旗子暗记源1放大器通过R1接到后级放大器输入端,旗子暗记源2放大器通过R2接到后级放大器输入端,旗子暗记源放大器输出端通过R1和R2合并成一起。如果电路中没有R1和R2这两个电阻,那么旗子暗记源1放大器的输出电阻就成为旗子暗记源2放大器负载的一部分,旗子暗记源2放大器的输出电阻就成为旗子暗记源1放大器负载的一部分,这样两个旗子暗记源放大器之间就会相互影响,不利于电路的稳定事情。
图3-36 旗子暗记源电阻隔离电路
加了隔离电阻R1和R2后,两个旗子暗记源放大器的输出端之间就被隔离开,两个旗子暗记源放大器输出的旗子暗记电流可以不流入对方的放大器输出端,而更好地流到后级放大器输入端,实现电路的隔离浸染,这样两个旗子暗记源放大器之间就不会相互影响。
电流变革转换成电压变革的电路在电子电路中,为数不少的情形须要电路中电流的变革转换成相同的电压变革,这时可以用电阻电路来完成。
晶体管的集电极负载电阻电路
如图3-37所示,该图是利用电阻将电流变革转换成电压变革的范例电路,这也是晶体管的集电极负载电阻电路。
当电流流过R1时,在R1上产生电压降,使R1的下端电压发生改变。电路中“R1上的电压”加上“A点电压”便是“+V”,当电阻R1阻值一定,流过R1的电流增大时,在R1上的电压降增大,VT1集电极电压低落;当流过R1的电流减小时,在R1上的电压降减小,VT1集电极电压升高。
音量调节限定电阻电路和阻尼电阻电路(1)音量调节限定电阻电路
音量调节限定电阻电路是使音量掌握的范围受到限定的一种常见的电路,在这种电路的限定之下音量不能调到最大,也不能调到最小。这一电路用在一些分外的音量掌握场合,防止由于音量掌握不当造成对其他电路事情状态的影响。
如图3-38所示,该图便是音量调节限定电阻电路。
图3-37 晶体管的集电极负载电阻电路
图3-38 音量调节限定电阻电路
当RP1调到最下端时音量不能达到最小(比较于没有R2时的电路),由于电阻R2上存在一些旗子暗记电压降,而这一旗子暗记电压降经RP1动片被送到了后面的放大器,以是电路无法将音量关去世,达到限定最小音量的目的。
当RP1调到最上端时音量不能达到最大(比较于没有R1时的电路),由于电阻R1上存在一些旗子暗记电压降,达到限定最大音量的目的。
(2)阻尼电阻电路
图3-39所示为阻尼电阻电路,电路中的L1和C1并联,构成了LC谐振电路,阻尼电阻R1与之并联在这一电路上。
图3-39 阻尼电阻电路
L1和C1谐振电路中,谐振电路的品质因数Q值(一种表征谐振特性的参数)越大,谐振旗子暗记能量损耗越小。由于电阻对振荡旗子暗记存在损耗浸染,因此加入阻尼电阻R1后,Q值会减小。R1阻值越小,对谐振旗子暗记能量的损耗越大,Q值越小,反之则越大。
电阻消振和负反馈电阻电路(1)电阻消振电路
在放大器电路中,如果存在电路设计不合理等成分会涌现高频或超高频的啸叫,这种征象称为振荡,肃清这种有害振荡的电路称为消振电路。
图3-40所示为电阻消振电路,电路中的R1称为消振电阻,它常日接在放大管基极回路中,或两级放大器电路之间,而电阻R1的浸染便是用来花费可能产生的高频振荡旗子暗记能量,从而达到消振目的。
(2)负反馈电阻电路
如图3-41所示为晶体管偏置电路中的负反馈电阻电路,这是一个比较常见的负反馈电阻电路,这种电路是运用很广、种类很多、剖析较困难的电路。图中电阻R1接在VT1基极与集电极之间,基极是VT1的输入端,集电极是VT1的输出端,VT1事情在放大状态,是一个放大器。当一个元器件(电阻)接在一个放大器输入端与输出端之间时,该元器件就构成了反馈电路,电路中的R1便是馈电阻,R1就与之构成了负反馈电路。当晶体管VT1事情在放大状态时,须要给VT1基极加上一个大小得当的直流电压,以便VT1产生一个大小适当的基极电流,电阻R1供应基极回路电流,电流利过R2,然后通过R1回到基极。
图3-40 电阻消振电路
图3-41 负反馈电路
恒流录音电阻电路如图3-42所示为恒流录音电阻电路。个中R1是恒流录音电阻,HD1是录音磁头,从图中可以看出,它是录音输出放大器的负载。
图3-42a中,录音磁头是录音输出放大器的负载,由于录音磁头是一个电感性负载,当频率升高时,它的感抗会增大,这样当录音旗子暗记电压一定时,显然流过录音磁头的高频旗子暗记电流小于低频旗子暗记电流,将造成高频录音旗子暗记的损耗。为此,哀求录音电流不能随录音旗子暗记频率的高低变革而变革,这由恒流录音电阻电路来完成。
在录音输出放大器输出回路中串联一个电阻R1,R1称为恒流录音电阻。在加入R1之后,录音输出放大器的负载阻抗为恒流电阻R1的阻值与录音磁头感抗之和(Z=R1+XL)。在电路设计时,令R1的阻值远大于(5倍以上)录音磁头的最大感抗XL(XL是最高录音旗子暗记频率下的感抗),这样其阻抗值也就约即是R1的电阻值(即Z≈R1)。
图3-42 恒流录音电阻电路
热敏电阻开水自动报警电路如图3-43所示为PTC热敏电阻开水自动报警电路。电路中,S1为电源开关,R2是PTC热敏电阻器,用来监测水温。A1是二输入四与非门CMOS集成电路。B为蜂鸣器,在得到驱动旗子暗记后可以发出蜂鸣声。
接通电源后,S1接通,电路进入事情状态。当水温较低时,热敏电阻器R2阻值较小,集成电路A1的⑩脚上直流电压较低,不敷以使集成电路A1内部的振荡器事情,此时蜂鸣器B不事情。
图3-43 热敏电阻开水自动报警电路
当水开了之后,热敏电阻器R2阻值已增大许多,即集成电路A1的⑥脚上直流电压高于阈值电压,使集成电路A1内部的振荡器事情,此时集成电路A1的⑥脚输出旗子暗记,驱动蜂鸣器B发生发火声响进行报警,表示水已烧开。
气敏电阻自动监测电路气敏电阻是一种半导体敏感元件,它是利用半导体材料对气体的吸附而使自身电阻率发生变革的机理从而进行丈量的元件。制作气敏电阻的氧化物半导体材料紧张有SnO2、ZnO及Fe2O3等。为了提高某种气敏元件对某些气体身分的选择性和灵敏度,材料中还掺入催化剂,它们的添加物质不同,能检测的气体也不同。
如图3-44所示为气敏电阻监测电路。个中Ut为气敏电阻的加热电源,U+为气敏电阻的丈量电源。
图3-44 气敏电阻监测电路
事情事理:该设备中传感器连接加热丝,在室温下接管某种气体后,其电导率变革不大,输出电压很小且险些不变。若保持气体浓度不变,输出电压随温度升高而增大,即该气敏元件的电导率变革很大,灵敏度大幅提高。因此气敏电阻事情时必须加热,它能烧去气敏元件上附着的油污、尘埃等,起到洗濯浸染,并加速被测气体的吸附、脱出过程。
光敏电阻掌握电路如图3-45所示为一种光控开关电路,这一光控开关电路常日在一些楼道、路灯等公共场所会用到。它的紧张功能元件便是光敏电阻,它在入夜时会自动开灯,天亮时自动熄灭。电路中,VS1是晶闸管,R1是光敏电阻器。
图3-45 光控开关电路
当光芒亮时,光敏电阻器R1阻值小,220V互换电压经VD1整流后的单向脉冲性直流电压在RP1和Rl分压后的电压小,加到晶闸管VS1门极的电压小,这时晶闸管VS1不能导通,以是灯HL回路无电流,灯不亮。
当光芒暗时,光敏电阻器Rl阻值大,RP1和Rl分压后的电压大,加到晶闸管VS1门极的电压大,这时晶闸管VS1进入导通状态,以是灯HL回路有电流流过,灯点亮。
湿敏电阻运用电路湿敏电阻是一种对环境湿度敏感的元件,它的电阻值能随着环境相对湿度的变革而变革。湿敏电阻器运用电路广泛运用于洗衣机、空调器、录音机、微波炉等家用电器及工业、农业等方面,以作湿度检测和湿度掌握用。
图3-46所示为湿度传感电路。电路中,R2是湿敏电阻器,A1是一个电压比较器集成电路,A2是CPU。
图3-46 湿度传感电路
电压比较器集成电路:当A1的⑤脚直流电压大于⑥脚直流电压时,⑦脚输出高电平给集成电路A2的⑦脚。当A1的⑤脚直流电压低于⑥脚直流电压时,⑦脚输出低电平给集成电路A2的⑦脚。由此可知,集成电路A1的⑦脚输出状态由⑤脚和⑥脚之间的相对电压高低决定。
集成电路A1的⑥脚上接有基准电压,所谓基准电压便是一个电压大小恒定的直流电压,即集成电路A1的⑥脚直流电压大小是不变的。
电阻R1和R2构成对+5V直流电压的分压电路,其分压输出的直流电压加到集成电路A1的⑤脚上。当相对湿度不大时,湿敏电阻器R2阻值比较大,这时集成电路A1的⑤脚直流电压大于⑥脚直流电压,⑦脚输出高电平给集成电路A2的⑦脚。当相对湿度较大时,湿敏电阻器R2阻值比较小,这时集成电路A1的⑤脚直流电压小于⑥脚直流电压,⑦脚输出低电平给集成电路A2的⑦脚。
磁敏电阻运用电路图3-47所示为磁敏电阻运用电路,电路中R1和R2是磁敏电阻器,A1是电压比较器。电路中R3和R4构成了一个直流电压的分压电路,而输出电压通过电阻R6加到了集成电路A1的②号脚上,称为基准电压。
当磁场发生改变时,磁敏电阻R1、R2分压电路的输出电压大小也随之变革,这一变革的电压通过电阻R5加到集成电路A1的①脚,A1的输出端③脚电压的大小也随着做相应的变革,这一变革经C1耦合得到输出旗子暗记U0。
图3-47 磁敏电阻运用电路
压敏电阻运用电路压敏电阻运用电路即电路浪涌和瞬变防护时的电路。对付压敏电阻的运用连接,大致可分为四种类型:电源线之间或者和大地之间的连接、负荷中的连接、接点之间的连接、半导体器件的保护连接。而在生活中最具有代表性的利用场合是在电源线及长间隔传输的旗子暗记线碰着雷击而使导线存在浪涌脉冲等情形下对电子产品起保护浸染。
图3-48所示为开关电源互换输入回路瞬变抑制器中的压敏电阻器电路。电路中R1是压敏电阻器,当电路中电压涌现峰值时,压敏电阻可以抑制掉该电压,R1的阻值迅速减小,险些可以算作一根导线直接导通状态,从而起到保护电路的浸染。
图3-48 压敏电阻运用电路
可变电阻范例运用电路1.晶体管偏置电路中可变电阻电路
如图3-49所示为可变电阻的分压偏置电路,电路中晶体管VT1构成高频放大器,RP1、R1和R2构成分压偏置电路。分压电路的输出电压大小由RP1、Rl和R2三个电阻的阻值大小决定,Rl和R2是固定电阻,调节可变电阻器RP1,进而调节VT1静态事情电流的大小,电流的大小决定着VT1是否能事情在最佳状态。
图3-49 可变电阻分压偏置电路
2.立体声平衡掌握可变电阻电路
如图3-50所示为音响放大器中的左、右声道增益平衡调度电路。电路中的RP1是可变电阻器,与R1串联。
音响电路中,对付双声道放大器而言,严格哀求左、右声道放大器增益相等(平衡),但是电路元器件的离散性导致左、右声道放大器增益不可能相等。为了担保左、右声道放大器的增益相等,须要设置左、右声道增益平衡调度电路,简称立体声平衡电路。
在右声道电路中,R2的阻值确定,使右声道放大器增益固定。以右声道放大器增益为基准,改变RP1阻值,使左声道放大器的增益即是右声道放大器的增益,就能实现左、右声道放大器的增益相等。
图3-50 可变电阻运用电路
前方高能,请把稳了这是一个神奇的圈子,这里有最优质的资源,这里有一起努力学习的小伙伴,这里还有不一样的风景。现在活动匆匆销中,入圈前50名的小伙伴,仅需1块钱即可成为永久会员,后面将会恢复原价,想加入趁现在!
本站所发布的文字与图片素材为非商业目的改编或整理,版权归原作者所有,如侵权或涉及违法,请联系我们删除,如需转载请保留原文地址:http://www.baanla.com/lz/zxsj/55752.html
上一篇:nipi户外爱好者的便携式冰箱
下一篇:返回列表
Copyright 2005-20203 www.baidu.com 版权所有 | 琼ICP备2023011765号-4 | 统计代码
声明:本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:123456789@qq.com