当前位置:首页 > 洗衣机 > 文章正文

简要介绍几种磁性器件

编辑:[db:作者] 时间:2024-08-25 09:13:37

但是,对付电源必不可少的磁性器件,却很难被标准化,由于市场需求的电源各式各样,输入电压电流、输出电压电流、高矮是非不尽相同,而现在的电源追求高功率密度,不可能用大变压器、电感用在小功率产品上,磁性器件生产厂家也不可能做出所有类型的磁性器件放到市场上去。
以是这必须由工程师设计好,然后由磁性器件生产厂家生产。
有大学教授预言未来电源硬件工程师的代价就更多地表示在磁性器件的设计能力。

简要介绍几种磁性器件

一、常用磁性材料的基本知识

就当前的技能而言,每一个开关电源中一定会有磁性器件,它对电源的体积、效率等有主要影响。
磁性材料有很多种类,特性互异,不同的运用处所有不同的选择。
以下整理了几种常用的磁性材料。

表1.1 几种常用的磁性材料特性

(有些参数没有找到详细数值,知道的朋友在评论区奉告一下哈!

低碳钢:由于电阻率很低,导致其在高频时涡流很大,损耗大,发热厉害,以是只能用于低频场合,例如用于制作无源PFC的电感;

铁氧体:铁氧体的种类很多,由于锰-锌铁氧体价格较为便宜,并且磁导率可选范围大,涡流损耗较小,以是在几十kHz到几百kHz的频率范围内被用得最为广泛。
磁导率在2k-4k的在变压器中利用广泛,磁导率>10k的多用于共模电感。

钼坡莫合金、高磁通:具有高饱和磁感应强度、直流叠加特性,温度稳定性良好,损耗很低,但价格昂贵,多用于不计本钱的航空和军工产品。

铁硅铝:具有良好的高频磁特性,较好的温度稳定性,宽恒导磁率及低损耗、低本钱,在输出电感、APFC电感得到广泛利用。

铁粉芯:具有高饱和磁感应强度,磁导率相对较小,能存储较大的能量,但具有较大磁滞回路面积,因此铁粉芯不适用于不连续电流的电感器或具有大互换磁通摆动的变压器中。

二、磁芯材料的参数特点

以上只是大略地先容了三大类的磁性材料(钼坡莫合金、高磁通、铁硅铝和铁粉芯均属于粉末磁芯),大类下可以细分为很多种磁性材料,无法逐一先容。
这里以最常用的TDK的Mn-Zn铁氧体材料为例先容一下磁芯材料须要把稳的参数特点。

在TDK品牌中Mn-Zn系列铁氧体中包括PC33,PC40,PC44,PC45,PC46,PC47,PC50,PC90,PC95等等多种材质。
这些不同材质的铁氧体有不同的特性参数,如初始磁导率、磁芯损耗、温度特性等等。

种类太多了,下面紧张以PC40、PC44、PC47为例进行先容。

图Bs-T展示了PC40、PC44、PC47的饱和磁感应强度和剩余磁感应强度跟温度关系,可以看到磁感应强度PC47>PC44>PC40,并且它们的饱和磁感应强度和剩余磁感应强度都随温度的升高而降落,以是设计变压器和电感时应取高温下的饱和磁感应强度的80%-90%作为设计参数。

图Bs-T

图CLP-T展示磁芯损耗与温度(和频率)的关系,可以看到温度为100℃旁边这三种铁氧体的损耗最小,以是作为工程师,我们设计电源时,并不能认为使变压器的磁芯温度越小越好,掌握温度在该材质的损耗最小的温度处,可以使电源效率提高。

左图为100kHz频率下的损耗,右图为200kHz频率下的损耗,可以看到频率只是提高了1倍,但损耗却提高了将近10倍!


PC40与PC47在100℃处的损耗差值由170kW/m3变为1300kW/m3,以是提高频率对磁芯材质的哀求很高。

图CLP-T

但须要把稳的是,并不是所有材质的铁氧体磁芯都是在温度100℃时损耗最小,如下图所示,PC46材质在46℃、PC45在80℃损耗最小。

通过铁氧体的磁感应强度的大小也跟损耗有关,通过的磁感应强度越大,磁芯损耗也就越大。

不同材质的铁氧体磁导率也不同,图ui-f展示了初始磁导率与频率的关系。
在频率大于1000kHz后初始磁导率迁移转变降落。
设计超高频变压器、电感时须要特殊把稳选择磁芯材质的频率特性。

图ui-f

温度对磁导率的影响也很大,铁氧体材料一样平常在200多℃磁导率就会连忙降落为零,该温度称为居里温度。
这个在设计时须要特殊把稳,有些磁芯材料居里温度只有130℃旁边,如HS10。

图ui-T

HS10--图ui-T

三、绕制线圈工艺对磁性器件性能的影响

影响磁性器件性能的成分除了磁芯材质外,与磁性器件的线圈绕制工艺也有很大关系。
例如共模电感,很多时候,共模电感的感量越大,对EMI的抑制效果越好,所以为了得到更大的感量,我们会只管即便地绕制更多的匝数,但有时每每会得到更差的EMI效果。

这是由于导线匝与匝之间的寄生电容引起的,寄生电容与电感形成谐振电路引起EMI变差。

图3.1 电感上的寄生电容示意图

图3.2 绕线办法导致寄生电容增大

利用金属箔做磁芯器件的绕线,由于导线面积的加宽,增大了匝间的寄生电容。

图3.3 金属箔匝间电容

变压器原边和副边的绕线办法对变压器的性能也有很大影响,下图中,变压器右边的折线图表示在变压器不同位置的线圈产生的磁动势(mmf),磁动势越大,“临近效应”产生涡流损耗越大。
此外,变压器还有一个很主要的参数——漏感,这参数对不同的电源拓扑会产生不同影响。
采取线圈并绕办法,可以减小变压器的漏感。

图3.4 一、二次侧绕组构造不同的变压器

本站所发布的文字与图片素材为非商业目的改编或整理,版权归原作者所有,如侵权或涉及违法,请联系我们删除,如需转载请保留原文地址:http://www.baanla.com/xyj/210383.html

XML地图 | 自定链接

Copyright 2005-20203 www.baidu.com 版权所有 | 琼ICP备2023011765号-4 | 统计代码

声明:本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:123456789@qq.com